
Reconstruction of equidistant time series using neural networks

Ludwik Liszka
Swedish Institute of Space Physics
Sörfors 634
S-905 88 Umeå
Sweden

Introduction

Under certain circumstances it is impossible to perform equidistant data sampling of a
time series.  An example may be astronomical observations from the Earth surface,
where the meteorological conditions are the limiting factor.  In order to perform
frequency analysis of such data, it has been necessary to use special algorithms for non-
equidistant data (c.f. e.g. Wilcox & Wilcox, 1995, Breedon, J.L. and Packard N.H.,
1992).  Such algorithms are derived under the assumption of stationarity of the
monitored process.  If the observed process is non-stationary it is practically impossible
to perform a frequency analysis of the data.  For that reason it is necessary to convert the
measured data into equidistant data.  A possible method to convert non-equidistant data
to equidistant data, using neural networks, is shown here.
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Problem description

Fig. 1. A time series with non-equidistant points.

Assume a measured variable yi sampled at non-equidistant points xi (see Fig. 1).  The
non-linear interpolation between two points (yi, xi) and (yi+1, xi+1) may be performed in
two steps:

Fig. 2.  Data points used to prepare a training file.

1. In the first step a window consisting of 2k+1 points of the time series is used to train a
neural network model of the time series (see Fig. 2 for k=5).  The y-value corresponding
to the point xi = x0, in the window, yi, is used as a desired output in a back-propagation
network (Rumelhart, 1986); see Fig 3.  The corresponding x-values are transformed into 
ξ-values with the x0-coordinate of the point yi as origo:

ξi  = xi - x0 = 0 (1)
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The input vector consists of following 4k values:

ξ
i-k

,  yi-k
,  ξi-(k-1) , y i-(k-1)

, .... ξi-1
,  yi-1

, ξ
i+1, yi+1

,......ξ
i+(k-1) , y i +(k-1) , ξi+k , yi+k

     (2)

Since the ξi value is always equal to 0, it may be omitted from the input data fed into the
network (see Fig. 2).

Fig. 3.  An example of the neural network of the back-propagation type used for
modeling of the observed non-equidistant time series; k=5.

.  The window is moved through all the data, and a training file is constructed.  The
training file is then used to construct the model of the time series.  If the time series is
non-stationary, a hybrid model (Liszka, 1993), consisting of a back-propagation network
and a self-organizing map network (SOM) (cf Kohonen, 1989) may be used.  The model
will, at the recall, reproduce the y-value corresponding to a point between xi-1 and xi+1.

2. In the second step a recall file is constructed for the measured data.  The interpolation
may start after the point no. k of the time series, and it may be carried on until the point
no. N-k, where N is the number of observed points of the time series.  The xi-coordinate
of the interpolated point is then moved at constant steps between the points no. i and
i+1.  For each interpolated point in that interval there will be a vector consisting of the
same set of y-values and a new set of ξ-values, depending on the location of the
interpolated point with respect to the points i and i+1.

A three-step model

It has been found that the best results will be obtained using a three-step model.  The
principle of the model is shown in Fig. 4.  The model consists of two back-propagation
networks, BP1 and BP2 and one SOM network.  The procedure starts at the bottom of
the diagram where the BP1 is trained with the training file consisting of input vectors, as
shown in (2), and of the desired outputs yi. The BP1 is then used to estimate the first
approximation of the interpolated values, Yi.

The same training file is then used to train the SOM-network.  In the present study,
networks with 10 x 10 processing elements self-organizing maps have been used.  The
recall is made twice.
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The first time, the recall is made with the training file in order to obtain the Kohonen
coordinates ri, ci (row & column no. on the map).  These will be added to the original
training input vector T1i in the second back-propagation network, BP2.  Using the
SOM-network in the interpolation process is equivalent to the categorization of the
shape of the data contained in the 2k point’s window.  Adding the Kohonen coordinates
to the input vector is equivalent to adding a category membership index to the original
input data.

The second recall is made using the recall file consisting of vectors R1i and of the
interpolated values Yi, estimated by the first back-propagation network BP1.  This step
will produce a set of Kohonen coordinates corresponding to the recall file.

In the last step of the interpolation process the BP2 network is trained with the input
vectors supported by the Kohonen coordinates.  The last recall generates the final
interpolated data, Yfi.

The principle of the model may be described as follows: The first network BP1 finds a
value of Yi, for which the conditional probability:

P( Yi | ξi-k,  yi-k,  ξi-(k-1), yi-(k-1) , ... ξi-1,  yi-1, ξi+1 yi+1,.....ξi+(k-1), yi +(k-1), ξi+k, yi+k )

 is a maximum.  The SOM network is categorizing the actual window together with the
estimated  Yi value. The Kohonen coordinates generated by the SOM network are a kind
of  two-dimensional category membership index of the interpolated data.  The Kohonen
coordinates facilitate the function of the last network BP2 which finds the final value of
Yfi, for which the conditional probability:

P( Yfi | ξi-k,  yi-k,  , .... ξi-1,  yi-1, ξi+1 yi+1,....., ξi+k, yi+k,  Ri, Ci )

is a maximum.
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Fig. 4. The model used for interpolation of non-equidistant observations.

Training: yi

Recall:  Yfi  -  Final interpolated data

Back-Propagation Network

Training:  { T1i, ri, ci }

Recall :    { R1i, Ri, Ci }

Kohonen Coordinates

Recall with the training file: ri, ci

Recall with the recall file:  Ri, Ci

Self-Organizing Map Network

Training:  {  T1i, yi }

Recall:     {  R1i, Yi }

Training:  yi (observed values)

Recall:    Yi (interpolated values)

Back-Propagation Network

Training: T1i (one vector for each observed
value)

Recall: R1i (one vector for each interpolated
value)
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It must be emphasized that the value reconstructed by the method is not necessarily
identical with the true one, i. e. the value which would be measured at the actual instant.

An important question is how to select a proper value of k, which will give the best
results of interpolation.  In general, the proper value of k will depend on the statistical
properties of the measured variable y and on the distribution of time intervals between
the measurements.

The present interpolation method will be illustrated by two examples.

Example 1:  A stationary, deterministic variable being a sum of two harmonic
components

A time series consisting of 8000 points has been calculated using an expression:

Y(xi) = A1 (1+n1) cos(2πxi/T1) +  A2 (1+n2) cos(2πxi/T2)

where n1 and n2 are random numbers between 0 and 0.1 acting as noise factors.  In order
to simulate realistic data, a noise with a maximum amplitude of 10% is added to the
signal.  A fraction of the time series is shown in Fig. 5.  A non-equidistant time series
consisting of 2000 points was then constructed by selecting  (in random) 25% of points
from the original time series.

The resulting non-equidistant time series is shown in Fig. 6.
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Fig. 5. An initial part of the original time series
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Fig. 6.  25% randomly selected points from the original time series - a simulation of a
non-equidistant time series

A comparison of the original data, the non-equidistant data, being 25% of the original
data, and finally the equidistant data computed from the non-equidistant data, using a
k=2 model,  is shown in Fig. 7 for a small section of  the time series.

Fig. 7.  A comparison of the original data (circles), the non-equidistant data, being 25%
of the original data (triangles), and finally the equidistant data computed from the non-
equidistant data (squares).

It may be interesting to compare the structure of the intermediate result (after BP1) with
the final result (after BP2).  A short section of the time series showing both the
intermediate and the final, reconstructed time series is shown in Fig. 8.
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 Fig. 8. A comparison of the original data (circles), the non-equidistant data, being 25%
of the original data (asterisks), intermediate results after the BP1 network (triangles) and
finally the equidistant data computed from the non-equidistant data (squares).

In connection with observations of time series, it is usually interesting to study the
frequency spectrum.  The reconstruction of the time series must be performed in such a
way that the frequency spectrum of the reconstructed time series will be as close to the
true frequency spectrum, as possible.  For  the present  time series, the FFT was
performed using a 128 points sliding constant window stepping 8 points at a time.
Average linear frequency spectra for the original time series and for the reconstructed
time series, both the final results and the intermediate results, are shown in Fig. 9.  It may
be seen that the frequency spectrum of the final reconstructed time series agrees well
with the original spectrum.  As it could be expected, the intermediate result of the
reconstruction gives a spectrum, which is much further from the true one than the
spectrum of the final reconstructed time series.

An interesting detail is that the reconstruction process does not seem to produce any
significant high frequency components.
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Fig. 9. Linear frequency spectra of the original time series, of the intermediate result after
the BP1 network and of the final result after the BP2.
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Example 2:  Reconstruction of Wolf numbers

The present technique to reconstruct time series was also tested on 9 years of solar
sunspot numbers (Wolf numbers), being a typical non-stationary, non-deterministic time
series.  Years 1980 - 89, including a sunspot minimum, were used in the present
example.  In the present example only 20% randomly chosen data points were used to
simulate the non-equidistant data.  A three stage neural network model with k=2 has
been used for reconstruction of the data in the same way as in the previous example.

The entire original time series is shown in Fig 10.
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Fig. 10. Solar sunspot numbers (Wolf numbers) during 1980-89

It may be seen from the example of Fig. 12 that the method reconstructs, in some cases,
missing structures in the data,  as between  day’s  no. 365 and 380.  In other cases, as
between day’s no. 305 and 325, the reconstruction is not very accurate, but it shows the
general shape of the curve when the data are missing.

The average frequency spectra obtained using a constant window consisting of 128
points, shifted 8 points of the time series at a time, for the whole period  1980-89 are
shown in Fig. 13 for both the original and the reconstructed data.  It may be seen that for
frequencies below channel #4 (corresponding to a period of 32 days) the spectrum of the
reconstructed  data shows lower amplitudes than the original spectrum.  The opposite is
observed for higher frequencies.  The differences are, however, small as the diagram
displays the linear spectral amplitudes.  The location of spectral peaks is essentially the
same for both spectra.
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Fig. 11. Wolf numbers during 100 days at the end of 1980 (upper diagram) and 20%
randomly selected Wolf numbers from the same period (lower diagram).
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Fig. 12. A comparison of observed Wolf numbers at the end of 1980,  20% randomly
selected Wolf numbers and reconstructed Wolf numbers for the same period
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Fig. 13.  Average spectra of observed and reconstructed Wolf numbers during the entire
period 1980-89.

Conclusions

A three-step model of a time series, if properly designed, may be useful for conversion of
non-equidistant measurements into an equidistant time series.  The reconstructed time
series shows essentially the same frequency spectrum as the original time series.  The
present method may be used for processing observations of both stationary and non-
stationary processes.
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